Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gui-Ling Zhang, Yan-Tuan Li* and Zhi-Yong Wu

Marine Drug and Food Institute, Ocean University of China, 266003 Qingdao, People's Republic of China

Correspondence e-mail: yantuanli@ouc.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.037$
$w R$ factor $=0.093$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
μ-Oxalato-bis[(2,2'-bipyridine)(N, N-dimethylformamide)copper(II)] bis(perchlorate)

In the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}$, the oxalate-bridged binuclear copper(II) complex cation is centrosymmetric. The $\mathrm{Cu}^{\text {II }}$ atom has a distorted square-pyramidal geometry with two O and two N atoms from oxalate and bipyridine ligands in the basal plane, and with a dimethylformamide O atom in the apical position. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 5.1492 (18) \AA.

Comment

In the last few decades, the chemistry of bisbidentate oxalate complexes has become an active area of research, with interest arising from the various structural features of these compounds (Román et al., 1996; Girerd et al., 1980; Pellaux et al., 1997; Coronado et al., 1996) and their applications in areas such as biological chemistry (Cleare, 1974), catalysis (Sinha \& Shankar, 1993; Díaz-Guemes et al., 1987), photochemistry (Hauser et al., 1996) and magnetochemistry (Larionova et al., 1998; Decurtins et al., 1996; Kahn, 1993). In the process of fabricating these kinds of complexes, some organic N -donors, such as $2,2^{\prime}$-bipyridine and related species (Hagrman et al., 1999; Fu et al., 2001), have often been chosen as rigid ligands to bind the metal centres. In particular, binuclear $\mathrm{Cu}^{\text {II }}$ complexes with bis(bidentate) bridging ligands have been investigated, both experimentally and theoretically (Kahn, 1985; Charlot et al., 1984; Julve et al., 1984). However, there is only one paper to date describing a compound with N, N dimethylformamide (DMF) coordinating to the Cu centre (Foxon et al., 2004), among the many crystal structures of oxalate-bridged binuclear complexes. Here, we report the structure of the title compound, (I).

Compound (I) consists of a $\left[\mathrm{Cu}_{2}(\mathrm{ox})(\mathrm{bpy})_{2}(\mathrm{DMF})_{2}\right]^{2+}$ (bpy is $2,2^{\prime}$-bipyridine and ox is oxalate) cation and two perchlorate anions (Fig. 1). The binuclear complex cation has an inversion

Received 13 April 2006 Accepted 25 April 2006

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids. Dashed lines indicate weak bonds. [Symmetry code: (i) $2-x$, $-y,-z$.]

Figure 2
The one-dimensional structure of (I) extending along the a axis, with the complexes bridged by perchlorate anions via weak bond interactions and non-classical hydrogen bonds. Dashed lines indicate weak interactions. [Symmetry codes: (i) $2-x,-y,-z$; (ii) $x-1, y, z$.]
centre at the midpoint of the $\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$ [symmetry code: (i) $2-x,-y,-z]$ bond of the ox ligand. The $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{1}$ distance is $5.1492(18) \AA$, which compares well with similar types of reported binuclear oxalate-bridged complexes (Kahn, 1985; Charlot et al., 1984; Julve et al., 1984). The coordination geometry of the Cu atom is square-pyramidal, with atoms $\mathrm{O} 1 /$ $\mathrm{O} 2^{\mathrm{i}} / \mathrm{N} 1 / \mathrm{N} 2$ from the ox and bpy ligands in the basal plane and atom O 3 from DMF in the apical position. The Cu atom is displaced 0.0988 (11) \AA from the basal plane towards atom O3. The in-plane $\mathrm{Cu}-\mathrm{O}$ bond distances average 1.974 (2) \AA and the $\mathrm{Cu}-\mathrm{N}$ bond distances average 1.980 (3) \AA, while the apical $\mathrm{Cu}-\mathrm{O} 3$ bond distance is 2.335 (2) \AA (Table 1). A longer $\mathrm{Cu}-\mathrm{O}$ distance of 2.653 (3) \AA between atom Cu 1 and perchlorate atom O11 trans to O3 implies a weak bonding interaction.

The perchlorate anions play an important role in the crystal structure of (I). As well as the weak bonding interactions with Cu atoms mentioned above, they are involved in non-classical hydrogen bonds (Table 2) with neighbouring bpy ligands, and thus they bridge the complexes into one-dimensional chains
extending along the a axis (Fig. 2). There is offset $\pi-\pi$ stacking between the two bpy ligands related by an inversion centre, the nearest separation being 3.485 (5) \AA for C3 \cdots C3(1-x, $-y, 1-z)$. These stacking and dipole attractions between the DMF ligands dominate the interchain interactions.

Experimental

All chemicals and solvents used for the synthesis were of reagent grade. A methanol solution (5 ml) of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0742 \mathrm{~g}$, 0.2 mmol) was added to a stirred aqueous solution (10 ml) of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.184 \mathrm{~g}, 1 \mathrm{mmol})$. The mixture was heated at 333 K for 1 h . Then, a methanol solution (5 ml) of bpy ($0.0312 \mathrm{~g}, 0.2 \mathrm{mmol}$) and DMF (5 ml) were added to the above mixture in turn. The resulting solution was heated at 333 K for 4 h . The precipitate was filtered off, washed with cold water, methanol and diethyl ether in turn, and then redissolved in water. Blue crystals of (I) were obtained from the solution by slow evaporation (yield $0.0174 \mathrm{~g}, 60 \%$).

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]-$	$\gamma=83.165(6)^{\circ}$
$\left(\mathrm{ClO}_{4}\right)_{2}$	$V=853.9(7) \AA^{3}$
$M_{r}=872.58$	$Z=1$
Triclinic, $P \overline{1}$	$D_{x}=1.697 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.518(4) \AA$	Mo $\mathrm{A} \alpha$ radiation
$b=9.361(4) \AA$	$\mu=1.48 \mathrm{~mm}^{-1}$
$c=11.056(5) \AA$	$T=293(2) \mathrm{K}$
$\alpha=82.932(7)^{\circ}$	Block, blue
$\beta=78.760(7)^{\circ}$	$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min }=0.665, T_{\max }=0.809$

4593 measured reflections 3046 independent reflections 2395 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$ $\theta_{\text {max }}=25.2^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0363 P)^{2}\right. \\
& \quad+0.7011 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.974(2)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$1.977(3)$
$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.973(2)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$2.335(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.983(3)$	$\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$1.525(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$82.11(11)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$92.17(10)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$84.91(8)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$90.66(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$174.36(10)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3$	$93.69(9)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$173.75(10)$	$\mathrm{C} 12-\mathrm{O} 3-\mathrm{Cu} 1$	$122.0(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$94.95(10)$	$\mathrm{O} 3-\mathrm{C} 12-\mathrm{N} 3$	$125.9(3)$
$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 12-\mathrm{N} 3$	$163.9(3)$		

[^1]Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 12^{\mathrm{ii}}$	0.93	2.60	$3.465(5)$	155

Symmetry code: (ii) $x-1, y, z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA\left(\mathrm{Csp}^{2}-\mathrm{H}\right)$ or $0.96 \AA\left(\mathrm{CH}_{3}\right)$, and were included in the final cycles of refinement as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 20471056).

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Charlot, M. F., Verdaguer, M., Journaux, Y., de Loth, P. \& Daudey, J. P. (1984). Inorg. Chem. 23, 3802-3808.

Cleare, M. J. (1974). Coord. Chem. Rev. 12, 349-371.
Coronado, E., Galán-Mascarós, J. R., Gimeénez-Saiz, C., Gómez-Garcia, J., Ruiz-Pérez, C. \& Triki, S. (1996). Adv. Mater. 8, 737-740.
Decurtins, S., Schmalle, H. W., Pellauz, R., Huber, R., Fischer, P. \& Ouladdiaf, B. (1996). Adv. Mater. 8, 647-652.

Díaz-Guemes, M. I., Bhatti, A. S. \& Dollimore, D. (1987). Thermochim. Acta, 110, 275-179.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Foxon, S. P., Walter, O., Koch, R., Rupp, H., Muller, P. \& Schindler, S. (2004). Eur. J. Inorg. Chem. pp. 344-348.
Fu, Z. Y., Lin, P., Du, W. X., Chen, L., Cui, C. P., Zhang, W. J. \& Wu, X. T. (2001). Polyhedron, 20, 1925-1931.

Girerd, J. J., Kahn, O. \& Verdaguer, M. (1980). Inorg. Chem. 19, 274-276.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.
Hauser, A., Von Arx, M. E., Pellaux, R. \& Decurtins, S. (1996). Mol. Cryst. Liq. Cryst. 286, 225-228.
Julve, M., Verdaguer, M., Gleizes, A., Philoche-Levisalles, M. \& Kahn, O. (1984). Inorg. Chem. 23, 3808-3818.

Kahn, O. (1985). Angew. Chem. Int. Ed. Engl. 24, 834-838.
Kahn, O. (1993). Molecular Magnetism, pp. 56-89. New York: VCH.
Larionova, J., Mombelli, B., Sanchiz, J. \& Kahn, O. (1998). Inorg. Chem. 37, 679-684.
Pellaux, R., Schmalle, H. W., Huber, R., Fischer, P., Hauss, T., Ouladdiaf, B. \& Decurtins, S. (1997). Inorg. Chem. 36, 2301-2308.
Román, P., Guzmán-Miralles, C., Luque, A., Beitia, J. I., Cano, J., Lioret, F., Julve, M. \& Alvarez, S. (1996). Inorg. Chem. 35, 3741-3751.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Siemens (1994). XP . Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sinha, A. \& Shankar, V. (1993). Ind. Eng. Chem. Res. 32, 1061-1070.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry code: (i) $-x+2,-y,-z$.

